Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Commun ; 15(1): 1232, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336715

RESUMO

Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez , Gravidez Múltipla , Nascimento Prematuro/epidemiologia , Peso ao Nascer , Mitocôndrias/genética , DNA Mitocondrial/genética
2.
Dev Med Child Neurol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394064

RESUMO

Malformations of cortical development (MCDs) represent a heterogeneous spectrum of disorders characterized by atypical development of the cerebral cortex. MCDs are most often diagnosed on the basis of imaging, although subtle lesions, such as focal cortical dysplasia, may only be revealed on neuropathology. Different subtypes have been defined, including lissencephaly, heterotopia, cobblestone malformation, polymicrogyria, and dysgyria. Many MCDs are of genetic origin, although acquired factors, such as congenital cytomegalovirus infections and twinning sequence, can lead to similar phenotypes. In this narrative review, we provide an overview of the diagnostic approach to MCDs, which is illustrated with clinical vignettes, on diagnostic pitfalls such as somatic mosaicism and consanguinity, and recognizable phenotypes on imaging, such as tubulinopathies, the lissencephaly spectrum, tuberous sclerosis complex, and FLNA-related periventricular nodular heterotopia.

3.
J Med Genet ; 61(2): 103-108, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37879892

RESUMO

The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Humanos , Feminino , Genes Homeobox , Proteínas de Homeodomínio/genética , Transtorno do Espectro Autista/genética , Mutação/genética , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Agenesia do Corpo Caloso/genética
4.
Am J Med Genet A ; 194(5): e63510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135344

RESUMO

Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy classically characterized by early onset of severe neurologic injury with basal ganglia calcifications, white matter abnormalities, and progressive cerebral atrophy, along with lymphocytosis and raised interferon alpha (INFα) in the cerebrospinal fluid (CSF). Here, we report a 31/2 year-old patient born with prenatal onset AGS, first manifesting as intra-uterine growth retardation. Cranial ultrasonography and cerebral MRI revealed ventriculomegaly and periventricular and basal ganglia calcifications, along with cerebral atrophy. Perinatal infections and known metabolic disorders were excluded. Both CSF lymphocytosis and raised INFα were present. Molecular analysis disclosed two already described compound heterozygous pathogenic variants in TREX1 (c. 309dup, p.(Thr104Hisfs*53) and c. 506G > A, p.(Arg169His)). The evolution was marked by severe global developmental delay with progressive microcephaly. Promptly, the patient developed irritability, quadri-paretic dyskinetic movements, and subsequently tonic seizures. Sensorineural hearing loss was detected as well as glaucoma. Initially, he was symptomatically treated with trihexyphenidyl followed by levetiracetam and topiramate. At age 22 months, baricitinib (0.4 mg/kg/day) was introduced, leading to normal serum INFα levels. Clinically, dyskinetic movements significantly decreased as well as irritability and sleep disturbance. We confirmed that baricitinib was a useful treatment with no major side effect.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Azetidinas , Doenças dos Gânglios da Base , Calcinose , Inibidores de Janus Quinases , Linfocitose , Malformações do Sistema Nervoso , Purinas , Pirazóis , Sulfonamidas , Masculino , Gravidez , Feminino , Humanos , Lactente , Linfocitose/líquido cefalorraquidiano , Linfocitose/genética , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/tratamento farmacológico , Doenças dos Gânglios da Base/genética , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Calcinose/genética , Atrofia
6.
J Med Genet ; 60(2): 183-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35393335

RESUMO

BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.


Assuntos
Epilepsia , Microcefalia , Receptores de N-Metil-D-Aspartato , Humanos , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
7.
Genet Med ; 24(9): 1941-1951, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678782

RESUMO

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Proteínas Serina-Treonina Quinases , Simportadores , Encéfalo/anormalidades , Domínio Catalítico/genética , Hemizigoto , Humanos , Mutação com Perda de Função , Masculino , Herança Materna/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Simportadores/metabolismo
8.
Front Mol Neurosci ; 15: 886729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571374

RESUMO

Glycine receptors (GlyRs) containing the α2 subunit govern cell fate, neuronal migration and synaptogenesis in the developing cortex and spinal cord. Rare missense variants and microdeletions in the X-linked GlyR α2 subunit gene (GLRA2) have been associated with human autism spectrum disorder (ASD), where they typically cause a loss-of-function via protein truncation, reduced cell-surface trafficking and/or reduced glycine sensitivity (e.g., GLRA2Δex8-9 and extracellular domain variants p.N109S and p.R126Q). However, the GlyR α2 missense variant p.R323L in the intracellular M3-M4 domain results in a gain-of-function characterized by slower synaptic decay times, longer duration active periods and increases in channel conductance. This study reports the functional characterization of four missense variants in GLRA2 associated with ASD or developmental disorders (p.V-22L, p.N38K, p.K213E, p.T269M) using a combination of bioinformatics, molecular dynamics simulations, cellular models of GlyR trafficking and electrophysiology in artificial synapses. The GlyR α2V-22L variant resulted in altered predicted signal peptide cleavage and a reduction in cell-surface expression, suggestive of a partial loss-of-function. Similarly, GlyR α2N38K homomers showed reduced cell-surface expression, a reduced affinity for glycine and a reduced magnitude of IPSCs in artificial synapses. By contrast, GlyR α2K213E homomers showed a slight reduction in cell-surface expression, but IPSCs were larger, with faster rise/decay times, suggesting a gain-of-function. Lastly, GlyR α2T269M homomers exhibited a high glycine sensitivity accompanied by a substantial leak current, suggestive of an altered function that could dramatically enhance glycinergic signaling. These results may explain the heterogeneity of clinical phenotypes associated with GLRA2 mutations and reveal that missense variants can result in a loss, gain or alteration of GlyR α2 function. In turn, these GlyR α2 missense variants are likely to either negatively or positively deregulate cortical progenitor homeostasis and neuronal migration in the developing brain, leading to changes in cognition, learning, and memory.

9.
Brain ; 145(12): 4232-4245, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35139179

RESUMO

RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.


Assuntos
Megalencefalia , Transtornos do Neurodesenvolvimento , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios , Células NIH 3T3 , Transdução de Sinais/genética
10.
J Mol Diagn ; 24(5): 462-475, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218943

RESUMO

Inherited antithrombin deficiency, the most severe form of thrombophilia, is predominantly caused by variants in SERPINC1. Few causal structural variants have been described, usually detected by multiplex ligation-dependent probe amplification or cytogenetic arrays, which only define the gain or loss and the approximate size and location. This study has done a complete dissection of the structural variants affecting SERPINC1 of 39 unrelated patients with antithrombin deficiency using multiplex ligation-dependent probe amplification, comparative genome hybridization array, long-range PCR, and whole genome nanopore sequencing. Structural variants, in all cases only affecting one allele, were deleterious and caused a severe type I deficiency. Most defects were deletions affecting exons of SERPINC1 (82.1%), but the whole cohort was heterogeneous, as tandem duplications, deletion of introns, or retrotransposon insertions were also detected. Their size was also variable, ranging from 193 bp to 8 Mb, and in 54% of the cases involved neighboring genes. All but two structural variants had repetitive elements and/or microhomologies in their breakpoints, suggesting a common mechanism of formation. This study also suggested regions recurrently involved in structural variants causing antithrombin deficiency and found three structural variants with a founder effect: the insertion of a retrotransposon, duplication of exon 6, and a 20-gene deletion. Finally, nanopore sequencing was determined to be the most appropriate method to identify and characterize all structural variants at nucleotide level, independently of their size or type.


Assuntos
Deficiência de Antitrombina III , Retroelementos , Deficiência de Antitrombina III/genética , Antitrombinas , Éxons/genética , Humanos , Íntrons
11.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045343

RESUMO

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiência
12.
Eur J Paediatr Neurol ; 37: 155-164, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34535379

RESUMO

Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Malformações do Sistema Nervoso , Córtex Cerebral , Epilepsia Resistente a Medicamentos/complicações , Epilepsia/genética , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Sistema Nervoso Periférico/patologia
14.
Brain Commun ; 3(1): fcaa221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604570

RESUMO

Polymicrogyria is a malformation of cortical development characterized by overfolding and abnormal lamination of the cerebral cortex. Manifestations include epilepsy, speech disturbance and motor and cognitive disability. Causes include acquired prenatal insults and inherited and de novo genetic variants. The proportion of patients with polymicrogyria and a causative germline or mosaic variant is not known. The aim of this study was to identify the monogenic causes of polymicrogyria in a heterogeneous cohort of patients reflective of specialized referral services. Patients with polymicrogyria were recruited from two clinical centres in Australia and Belgium. Patients with evidence of congenital cytomegalovirus infection or causative chromosomal copy number variants were excluded. One hundred and twenty-three patients were tested using deep sequencing gene panels including known and candidate genes for malformations of cortical development. Causative and potentially causative variants were identified and correlated with phenotypic features. Pathogenic or likely pathogenic variants were identified in 25/123 (20.3%) patients. A candidate variant was identified for an additional patient but could not be confirmed as de novo, and therefore it was classified as being of uncertain significance with high clinical relevance. Of the 22 dominant variants identified, 5 were mosaic with allele fractions less than 0.33 and the lowest allele fraction 0.09. The most common causative genes were TUBA1A and PIK3R2. The other eleven causative genes were PIK3CA, NEDD4L, COL4A1, COL4A2, GPSM2, GRIN2B, WDR62, TUBB3, TUBB2B, ACTG1 and FH. A genetic cause was more likely to be identified in the presence of an abnormal head size or additional brain malformations suggestive of a tubulinopathy, such as dysmorphic basal ganglia. A gene panel test provides greater sequencing depth and sensitivity for mosaic variants than whole exome or genome sequencing but is limited to the genes included, potentially missing variants in newly discovered genes. The diagnostic yield of 20.3% indicates that polymicrogyria may be associated with genes not yet known to be associated with brain malformations, brain-specific somatic mutations or non-genetic causes.

15.
Mol Genet Genomic Med ; 9(2): e1588, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33507632

RESUMO

BACKGROUND: Myotonia congenita (MC) is a common channelopathy affecting skeletal muscle and which is due to pathogenic variants within the CLCN1 gene. Various alterations in the function of the channel have been reported and we here illustrate a novel one. METHODS: A patient presenting the symptoms of myotonia congenita was shown to bear a new heterozygous missense variant in exon 9 of the CLCN1 gene (c.1010 T > G, p.(Phe337Cys)). Confocal imaging and patch clamp recordings of transiently transfected HEK293 cells were used to functionally analyze the effect of this variant on channel properties. RESULTS: Confocal imaging showed that the F337C mutant incorporated as well as the WT channel into the plasma membrane. However, in patch clamp, we observed a smaller conductance for F337C at -80 mV. We also found a marked reduction of the fast gating component in the mutant channels, as well as an overall reduced voltage dependence. CONCLUSION: To our knowledge, this is the first report of a mixed alteration in the biophysical properties of hClC-1 consisting of a reduced conductance at resting potential and an almost abolished voltage dependence.


Assuntos
Canais de Cloreto/genética , Mutação de Sentido Incorreto , Miotonia Congênita/genética , Potenciais de Ação , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Miotonia Congênita/metabolismo , Transporte Proteico
16.
J Child Neurol ; 36(2): 152-158, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016209

RESUMO

Chudley-McCullough syndrome, a rare autosomal recessive disorder due to pathogenic variants in the GPSM2 (G-protein signaling modulator 2) gene, is characterized by early-onset sensorineural deafness and a typical combination of brain malformations, including ventriculomegaly, (partial) agenesis of the corpus callosum, cerebellar dysplasia, arachnoid cysts, frontal subcortical heterotopia, and midline polymicrogyria. When hearing loss is managed early, most patients have minor or no impairment of motor and cognitive development, despite the presence of brain malformations. We report 2 cases of Chudley-McCullough syndrome, one presenting with congenital deafness and normal development except for speech delay and one presenting prenatally with ventriculomegaly and an atypical postnatal course characterized by epileptic spasms, deafness, and moderate intellectual disability. These highlight the challenges faced by clinicians when predicting prognosis based on pre- or postnatal imaging of brain malformations. We have also reviewed the phenotype and genotype of previous published cases to better understand Chudley-McCullough syndrome.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/patologia , Cistos Aracnóideos/diagnóstico , Cistos Aracnóideos/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Adolescente , Agenesia do Corpo Caloso/genética , Cistos Aracnóideos/genética , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Surdez/genética , Surdez/patologia , Diagnóstico Diferencial , Feminino , Perda Auditiva Neurossensorial/genética , Humanos , Imageamento por Ressonância Magnética , Masculino
17.
J Med Genet ; 58(1): 33-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571897

RESUMO

BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Polimicrogiria/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Vermis Cerebelar/diagnóstico por imagem , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/patologia , Feminino , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Neuroimagem/métodos , Fenótipo , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/patologia , Tubulina (Proteína)/deficiência , Adulto Jovem
18.
J Med Genet ; 58(10): 712-716, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32820033

RESUMO

OBJECTIVE: To determine the potential disease association between variants in LMBRD2 and complex multisystem neurological and developmental delay phenotypes. METHODS: Here we describe a series of de novo missense variants in LMBRD2 in 10 unrelated individuals with overlapping features. Exome sequencing or genome sequencing was performed on all individuals, and the cohort was assembled through GeneMatcher. RESULTS: LMBRD2 encodes an evolutionary ancient and widely expressed transmembrane protein with no known disease association, although two paralogues are involved in developmental and metabolic disorders. Exome or genome sequencing revealed rare de novo LMBRD2 missense variants in 10 individuals with developmental delay, intellectual disability, thin corpus callosum, microcephaly and seizures. We identified five unique variants and two recurrent variants, c.1448G>A (p.Arg483His) in three cases and c.367T>C (p.Trp123Arg) in two cases. All variants are absent from population allele frequency databases, and most are predicted to be deleterious by multiple in silico damage-prediction algorithms. CONCLUSION: These findings indicate that rare de novo variants in LMBRD2 can lead to a previously unrecognised early-onset neurodevelopmental disorder. Further investigation of individuals harbouring LMBRD2 variants may lead to a better understanding of the function of this ubiquitously expressed gene.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/genética , Mutação de Sentido Incorreto , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo
19.
Nat Rev Neurol ; 16(11): 618-635, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895508

RESUMO

Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.


Assuntos
Consenso , Técnica Delfos , Internacionalidade , Malformações do Desenvolvimento Cortical/diagnóstico , Guias de Prática Clínica como Assunto/normas , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/normas , Humanos , Malformações do Desenvolvimento Cortical/epidemiologia
20.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515017

RESUMO

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Feto/diagnóstico por imagem , Variação Genética/genética , Células HEK293 , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...